Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116939

RESUMO

H4 lysine 20 dimethylation (H4K20me2) is the most abundant histone modification in vertebrate chromatin. It arises from sequential methylation of unmodified histone H4 proteins by the mono-methylating enzyme PR-SET7/KMT5A, followed by conversion to the dimethylated state by SUV4-20H (KMT5B/C) enzymes. We have blocked the deposition of this mark by depleting Xenopus embryos of SUV4-20H1/H2 methyltransferases. In the larval epidermis, this results in a severe loss of cilia in multiciliated cells (MCC), a key component of mucociliary epithelia. MCC precursor cells are correctly specified, amplify centrioles, but ultimately fail in ciliogenesis because of the perturbation of cytoplasmic processes. Genome-wide transcriptome profiling reveals that SUV4-20H1/H2-depleted ectodermal explants preferentially down-regulate the expression of several hundred ciliogenic genes. Further analysis demonstrated that knockdown of SUV4-20H1 alone is sufficient to generate the MCC phenotype and that its catalytic activity is needed for axoneme formation. Overexpression of the H4K20me1-specific histone demethylase PHF8/KDM7B also rescues the ciliogenic defect in a significant manner. Taken together, this indicates that the conversion of H4K20me1 to H4K20me2 by SUV4-20H1 is critical for the formation of cilia tufts.


Assuntos
Cromatina , Histonas , Animais , Diferenciação Celular/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Xenopus laevis/genética
2.
Curr Opin Genet Dev ; 55: 1-10, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31103921

RESUMO

Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.


Assuntos
Reprogramação Celular , Metilação de DNA , Epigênese Genética , Inativação Gênica , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Histonas/genética , Humanos , Processamento de Proteína Pós-Traducional
3.
Science ; 363(6424): 294-297, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30606806

RESUMO

Gene silencing by chromatin compaction is integral to establishing and maintaining cell fates. Trimethylated histone 3 lysine 9 (H3K9me3)-marked heterochromatin is reduced in embryonic stem cells compared to differentiated cells. However, the establishment and dynamics of closed regions of chromatin at protein-coding genes, in embryologic development, remain elusive. We developed an antibody-independent method to isolate and map compacted heterochromatin from low-cell number samples. We discovered high levels of compacted heterochromatin, H3K9me3-decorated, at protein-coding genes in early, uncommitted cells at the germ-layer stage, undergoing profound rearrangements and reduction upon differentiation, concomitant with cell type-specific gene expression. Perturbation of the three H3K9me3-related methyltransferases revealed a pivotal role for H3K9me3 heterochromatin during lineage commitment at the onset of organogenesis and for lineage fidelity maintenance.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Heterocromatina/genética , Histonas/química , Animais , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Camadas Germinativas/citologia , Hepatócitos/citologia , Células Secretoras de Insulina/citologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese
4.
Gastroenterology ; 156(6): 1834-1848, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689973

RESUMO

BACKGROUND & AIMS: Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS: Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS: We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS: The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.


Assuntos
Diferenciação Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Repressão Epigenética , Regulação da Expressão Gênica/genética , Cirrose Hepática/genética , Complexo Repressor Polycomb 2/genética , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Eucromatina , Feminino , Expressão Gênica , Ontologia Genética , Hepatócitos , Histonas/metabolismo , Cirrose Hepática/patologia , Masculino , Metilação , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Fatores de Tempo
5.
PLoS Genet ; 13(5): e1006757, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28498870

RESUMO

Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Transcrição Gênica , Animais , Blástula/crescimento & desenvolvimento , Blástula/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/biossíntese , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Herança Materna/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Xenopus/genética , Xenopus/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29348325

RESUMO

Mitosis is thought to be a period of transcriptional silence due to the compact nature of mitotic chromosomes and the apparent exclusion of RNA Pol II and many transcription factors from mitotic chromatin. Yet accurate reactivation of a cell's specific gene expression program is needed to reestablish functional cell identity after mitosis. The majority of studies on protein regulation and localization during mitosis have relied extensively on antibodies and cross-linking-based approaches that are known to artifactually exclude proteins from mitotic chromatin. Here we show that RNA Pol II localization in mitosis is antibody- and fixation-dependent, and that direct assessment of transcription by pulse-labeling nascent RNA reveals global, low-level mitotic transcription. We also find a hierarchy of gene reactivation as the cells transition from mitosis to their interphase amplitude of gene expression. Resetting of gene transcription during mitotic exit is coincident with enhancer transcription. Our work thus shifts focus from assessing mitotic exit as a binary transcription switch to a more nuanced concert of transcription amplitude and enhancer usage. We suggest that understanding how gene expression patterns are conserved during mitosis rests upon deciphering how transcription is maintained by promoters.

7.
Trends Genet ; 32(1): 29-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26675384

RESUMO

Establishing and maintaining cell identity depends on the proper regulation of gene expression, as specified by transcription factors and reinforced by epigenetic mechanisms. Among the epigenetic mechanisms, heterochromatin formation is crucial for the preservation of genome stability and the cell type-specific silencing of genes. The heterochromatin-associated histone mark H3K9me3, although traditionally associated with the noncoding portions of the genome, has emerged as a key player in repressing lineage-inappropriate genes and shielding them from activation by transcription factors. Here we describe the role of H3K9me3 heterochromatin in impeding the reprogramming of cell identity and the mechanisms by which H3K9me3 is reorganized during development and cell fate determination.


Assuntos
Reprogramação Celular , Inativação Gênica , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Diferenciação Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Humanos , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/metabolismo
8.
PLoS Genet ; 9(1): e1003188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382689

RESUMO

Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase/genética , Placa Neural , Fatores do Domínio POU , Proteínas de Xenopus/genética , Xenopus laevis , Animais , Técnicas de Cultura de Células , Linhagem da Célula , Cromatina/genética , Metilação de DNA , Embrião não Mamífero , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/metabolismo , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
9.
PLoS One ; 6(7): e22548, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21814581

RESUMO

Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.


Assuntos
Embrião não Mamífero/metabolismo , Células-Tronco Embrionárias/metabolismo , Epigenômica , Histonas/química , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Blástula/citologia , Blástula/metabolismo , Western Blotting , Diferenciação Celular , Cromatografia Líquida , Embrião não Mamífero/citologia , Perfilação da Expressão Gênica , Histonas/metabolismo , Lisina/química , Lisina/genética , Metilação , Camundongos , Camundongos Endogâmicos ICR , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...